If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3825=14x^2
We move all terms to the left:
3825-(14x^2)=0
a = -14; b = 0; c = +3825;
Δ = b2-4ac
Δ = 02-4·(-14)·3825
Δ = 214200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{214200}=\sqrt{900*238}=\sqrt{900}*\sqrt{238}=30\sqrt{238}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{238}}{2*-14}=\frac{0-30\sqrt{238}}{-28} =-\frac{30\sqrt{238}}{-28} =-\frac{15\sqrt{238}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{238}}{2*-14}=\frac{0+30\sqrt{238}}{-28} =\frac{30\sqrt{238}}{-28} =\frac{15\sqrt{238}}{-14} $
| Y=2x^2-16x | | 61-x+5=2(x+3)+6(x+1) | | (u-6)^2+3=31 | | • 2(5x-11)+12x=0 | | 95+3x+1=4x+3 | | 7w^2+42=98 | | 7x+1=49 | | s^2+8s+12=1 | | -12=5k=-92 | | s^2+8s+8=0 | | 21q^2+23q=0 | | 9.50r+14.75r=105 | | 5x-101+6x=163 | | 5v^2+15=105 | | 4n+1/3-11/2=2n+5/6 | | 8x+x=225 | | 23x+3+6x+3=180 | | 9x-8=-108 | | 5(3x-1)+28=11x+35 | | s^2-0.2s+1=0 | | 3t+8{}=4t+3 | | X2+y-12=0 | | -2=(x-7)/7 | | 10m^2+21m=0 | | 6x+4=11x-21 | | 5/7=p+4/7 | | 3n^2+26n+16=0 | | 5x2=0.1x | | 5c=95 | | 3x+2x=19000 | | 5x-16=8x+4. | | 63=9bb= |